Binome2020-4 : Différence entre versions
m |
|||
(6 révisions intermédiaires par le même utilisateur non affichées) | |||
Ligne 59 : | Ligne 59 : | ||
=Programmation= | =Programmation= | ||
− | Le code est disponible à cette adresse : https://github.com/SheepKnight/projet-BE | + | Le code est disponible à cette adresse : https://github.com/SheepKnight/projet-BE <br> |
+ | On retrouve une bibliothèque de lecture de la nand : nand.h et nand.c, où chaque variable de type décrit l'état des broches selon l'action effectuée auprès de la mémoire (envoi de commande, d'adresse, de donnée,...) et qui <br> | ||
+ | Le fichier msc_disk.c décrit toutes les fonctions appelées par TinyUSB, la bibliothèque qui gère les communications USB, et fait apparaître l'ESP32 en tant que Mass Storage Class. On y retrouve les callbacks appelés en cas de lecture d'un bloc, demande si la mémoire est prête,... | ||
+ | Pour lier tout ça se trouve le main.c, où sont écrites toutes les fonctions du serveur HTTP, ainsi que les initialisations des serveurs DHCP, du point d'accès Wi-Fi, et d'initialiser les GPIO en tant qu'entrée ou sorties. | ||
+ | |||
+ | |||
+ | La bibliothèque que nous avons écrite se base sur une fonction set_pins_state, qui prend en paramètre une structure appelée interface. | ||
+ | Cette structure peut contenir l'état de toutes les broches selon l'état qu'on veut décrire (envoi d'une commande, lecture de données...) | ||
+ | Les diverses fonctions nand_ telles que nand_reset, nand_read_id, ... ne font qu'englober successivement plusieurs set_pins_state pour rentrer dans de conditions décrites par la datasheet. | ||
+ | Sur le bus peut être lu/écrit un octet via les fonctions read_bus et write_bus. Pour appeler ces fonctions, il faut s'assurer de changer la direction du bus avec la fonction set_bus_direction. | ||
==Explications== | ==Explications== | ||
Ligne 93 : | Ligne 102 : | ||
Lors de la programmation de la clé USB, nous avons rencontré des problèmes de communication avec la mémoire. Pour pouvoir analyser les signaux, nous avons développé une version breakout de notre clé USB, afin d'y connecter un analyseur logique (Hantek6022BL) | Lors de la programmation de la clé USB, nous avons rencontré des problèmes de communication avec la mémoire. Pour pouvoir analyser les signaux, nous avons développé une version breakout de notre clé USB, afin d'y connecter un analyseur logique (Hantek6022BL) | ||
+ | |||
+ | La datasheet de la puce est disponible [https://drive.google.com/file/d/1-Ri5bXHbGSctdOXFNLgbktU8UNHmUoxk/view?usp=sharing Ici]<br> | ||
+ | La documentation du standard ONFI 2.1 utilisé par la NAND est disponible [https://drive.google.com/file/d/1cH_m-KeQBQLJiud7_JiVO7ihypyvS-w_/view?usp=sharing Ici] | ||
+ | |||
===Breakout de la mémoire=== | ===Breakout de la mémoire=== | ||
Ligne 173 : | Ligne 186 : | ||
==Lecture de l'id de la mémoire== | ==Lecture de l'id de la mémoire== | ||
'''192.168.4.1/nand_info''' nous sert l'identifiant de la mémoire NAND.<br> | '''192.168.4.1/nand_info''' nous sert l'identifiant de la mémoire NAND.<br> | ||
+ | 4f4e4649 est bien l'identifiant attendu selon la page 52<br> | ||
[[File:web_id.png|center|450px]]<br> | [[File:web_id.png|center|450px]]<br> | ||
==Debug de la mémoire== | ==Debug de la mémoire== | ||
'''192.168.4.1/debug_nand''' a 3 fonctions. Le premier appel efface un bloc à une certaine adresse. Le deuxième écrit une phrase à cette même adresse. Le troisième lit le bloc écrit à l'appel 2. | '''192.168.4.1/debug_nand''' a 3 fonctions. Le premier appel efface un bloc à une certaine adresse. Le deuxième écrit une phrase à cette même adresse. Le troisième lit le bloc écrit à l'appel 2. | ||
+ | |||
+ | =Problématiques= | ||
+ | |||
+ | Nous n'avons malheureusement pas pu compléter le cahier des charges que nous nous étions imposés. Voici les points qui ont pêché. | ||
+ | |||
+ | ==Mémoire== | ||
+ | |||
+ | Nous n'avons pu écrire/lire sur la mémoire NAND. Des valeurs (toujours les mêmes au même endroit) sont toujours retournées par la clé mais ne correspondent pas aux données écrites. La clé se présente tout de même comme une clé USB une fois branchée, il est juste impossible de la formater. | ||
+ | |||
+ | ==Micro== | ||
+ | |||
+ | Par faute de temps, nous n'avons pu implémenter la fonctionnalité de microphone I2S. | ||
+ | |||
+ | Cependant, l'interface de contrôle WiFi fonctionne, la clé se présente bien comme un périphérique de stockage USB une fois branchée, et nous arrivons à établir une communication avec la mémoire NAND. |
Version actuelle datée du 12 mai 2021 à 15:54
Introduction
Au cours de ce BE, nous (Albin Mouton et Jérémy Verschoore de la Houssaye) avons décidé de concevoir une clé USB disposant d'une mémoire de 8Go, pouvant se connecter à un réseau WiFi, afin de permettre un accès à distance de son contenu.
De plus nous espérons pouvoir ajouter une fonctionnalité microphone, permettant d'enregistrer l'utilisateur (à son insu ?)
Composants utilisés
Composants clés
- Microcontrôleur : ESP32-S2 (package WROVER 4MB)
- dispose d'une interface Wi-Fi Station + Point d'accès
- dispose de ports I2S (entrée et sortie)
- dispose d'une interface USB.
- Mémoire : MT29F8G
Autres
- Régulateur : LDO (3.3V)
- Boutons pour la programmation
- Microphone : SPH0645LM4H (communiquant en I2S)
Révisions
Rev 1
Version la plus simple de la clé, ne pouvant que servir de disque avec accès à distance.
Gerber : Fichier:Rev1 PCB.zip
Abandonnée pour la Rev 2 le 25/01
Rev 2
Ajout d'un microphone et d'une LED de statut. (Ainsi qu'un magnifique logo)
Gerber : Fichier:Rev2 PCB.zip
Version actuelle :
Programmation
Le code est disponible à cette adresse : https://github.com/SheepKnight/projet-BE
On retrouve une bibliothèque de lecture de la nand : nand.h et nand.c, où chaque variable de type décrit l'état des broches selon l'action effectuée auprès de la mémoire (envoi de commande, d'adresse, de donnée,...) et qui
Le fichier msc_disk.c décrit toutes les fonctions appelées par TinyUSB, la bibliothèque qui gère les communications USB, et fait apparaître l'ESP32 en tant que Mass Storage Class. On y retrouve les callbacks appelés en cas de lecture d'un bloc, demande si la mémoire est prête,...
Pour lier tout ça se trouve le main.c, où sont écrites toutes les fonctions du serveur HTTP, ainsi que les initialisations des serveurs DHCP, du point d'accès Wi-Fi, et d'initialiser les GPIO en tant qu'entrée ou sorties.
La bibliothèque que nous avons écrite se base sur une fonction set_pins_state, qui prend en paramètre une structure appelée interface.
Cette structure peut contenir l'état de toutes les broches selon l'état qu'on veut décrire (envoi d'une commande, lecture de données...)
Les diverses fonctions nand_ telles que nand_reset, nand_read_id, ... ne font qu'englober successivement plusieurs set_pins_state pour rentrer dans de conditions décrites par la datasheet.
Sur le bus peut être lu/écrit un octet via les fonctions read_bus et write_bus. Pour appeler ces fonctions, il faut s'assurer de changer la direction du bus avec la fonction set_bus_direction.
Explications
Environnement de développement
Pour programmer l'ESP32S2 nous utiliserons l'ESP-IDF. Celui-ci est disponible pour Linux, Mac et Windows.
Téléversement vers la carte
Afin de téléverser le programme vers la carte, il faut tout d'abord la passer en mode programmation lorsque celle-ci boot. Pour ce faire le GPIO 0 doit être relié au 0V lors du démarrage. Le bouton SW2 de notre carte est prévu à cet effet.
Il faut donc maintenir enfoncé SW2 pour passer le GPIO 0 à 0V, puis appuyer succinctement sur le SW1 (qui est le reset de la carte) pour la redémarrer. Une fois fait on peut relâcher SW2. La carte est en mode programmation.
Il existe deux moyens pour téléverser son programme une fois compilé :
- Via une interface série FTDI, à connecter aux Test Points comme ceci :
Clé USB | TP3 | TP4 | TP2 | TP1 |
FTDI | GND | 3V3 | RX | TX |
Nous avons conçu une plateforme de programmation imprimée en 3D pour simplifier la procédure :
- Directement via le port USB en le programmant par DFU (plus simple)
Debug mémoire
Lors de la programmation de la clé USB, nous avons rencontré des problèmes de communication avec la mémoire. Pour pouvoir analyser les signaux, nous avons développé une version breakout de notre clé USB, afin d'y connecter un analyseur logique (Hantek6022BL)
La datasheet de la puce est disponible Ici
La documentation du standard ONFI 2.1 utilisé par la NAND est disponible Ici
Breakout de la mémoire
Un PCB breakout de la Nand MT29F8G compatible pour Breadboards a été conçu : il est disponible ici Fichier:Nand breakout.zip. Dans notre cas, il a été fabriqué au sein des locaux de Polytech.Assemblé avec un module ESP32-S2 Saola 1M sur une breadboard, on obtient le montage suivant :
Analyse des signaux
Le code rédigé était d'abord testé sur la clé. Cependant, suite à des blocages, une analyse des signaux était nécessaire. En effet, nous n'arrivions pas à envoyer des commandes à la clé (Latch d'écriture lorsque signal montant selon la datasheet, mais descendant selon la réalité).
Cannel 0 | Write Protect (Inversé) |
Cannel 1 | Write Enable (Inversé) |
Cannel 2 | Address Latch Enable |
Cannel 3 | Command Latch Enable |
Cannel 4 | Chip Enable (Inversé) |
Cannel 5 | Read Enable (Inversé) |
Cannel 6 | VCC |
Cannel 7 | Ready/[Busy (Inversé)] |
Cannel 8-15 | IO0-7 |
Envoi de diverses commandes
Reset
Cette opération ne consiste qu'à envoyer la commande FF et d'attendre que le signal R/B# Repasse à haut.
Erase
Cette commande permet d'effacer un bloc de la mémoire : il faut envoyer la commande 60 et l'adresse du bloc (3 octets), puis la commande D0.
Write
On envoie la commande 80, l'adresse de la page qu'on souhaite modifier (5 octets), puis les données. On clôture l'écriture de la page par la commande 10. On se soucie ensuite de l'état de la mémoire en lui demandant son statut avec la commande 70, et en lisant un octet où chaque bit correspond à une information. (page 70 de la datasheet)
Read
Afin de lire les données écrites, il faut envoyer la commande 00, l'adresse que l'on souhaite lire (5 octets) et la commande 30, suivie par des cycles de lecture.
Wi-Fi
La clé génère un point d'accès sécurisé, auquel peuvent se connecter jusqu'à 5 clients. La clé a un serveur HTTP sur son port 80 auquel on peut se connecter, via l'ip 192.168.4.1
Il y a diverses interfaces Web pour accéder à certaines fonctionnalités :
Contrôle de la LED
192.168.4.1/led_on et 192.168.4.1/led_off permettent d'allumer et d'éteindre la LED verte.
Lecture de l'id de la mémoire
192.168.4.1/nand_info nous sert l'identifiant de la mémoire NAND.
4f4e4649 est bien l'identifiant attendu selon la page 52
Debug de la mémoire
192.168.4.1/debug_nand a 3 fonctions. Le premier appel efface un bloc à une certaine adresse. Le deuxième écrit une phrase à cette même adresse. Le troisième lit le bloc écrit à l'appel 2.
Problématiques
Nous n'avons malheureusement pas pu compléter le cahier des charges que nous nous étions imposés. Voici les points qui ont pêché.
Mémoire
Nous n'avons pu écrire/lire sur la mémoire NAND. Des valeurs (toujours les mêmes au même endroit) sont toujours retournées par la clé mais ne correspondent pas aux données écrites. La clé se présente tout de même comme une clé USB une fois branchée, il est juste impossible de la formater.
Micro
Par faute de temps, nous n'avons pu implémenter la fonctionnalité de microphone I2S.
Cependant, l'interface de contrôle WiFi fonctionne, la clé se présente bien comme un périphérique de stockage USB une fois branchée, et nous arrivons à établir une communication avec la mémoire NAND.