Binome2019-11 : Différence entre versions

De Wiki de bureau d'études PeiP
(Initiation aux logiciels)
(Calcul de la résistance)
Ligne 165 : Ligne 165 :
 
== Calcul de la résistance ==
 
== Calcul de la résistance ==
  
Voici les données de notre afficheur 7seg : Tension direct des leds : 2.5V, Courant direct des leds : 20mA. Par un calcul simple, il nous faut des résistances de 55Ω pour les leds
+
Voici les données de notre afficheur 7seg : Tension direct des leds : 2.2V, Courant direct des leds : 20mA. Par un calcul simple, il nous faut des résistances de 55Ω pour les leds
  
 
'''LA SUITE JEUDI 26 MARS 2020'''
 
'''LA SUITE JEUDI 26 MARS 2020'''

Version du 26 mars 2020 à 15:43



Introduction

Le but de notre projet est de fabriquer une clé usb avec une fonctionnalité originale : la fusion entre alarme et une horloge. Nous allons créer en parallèle avec la clé usb, un véritable réveil portatif.


Fonctionnalité et matériel utilisé

Fonctionalités de la clé :


- Capacité de la mémoire

- Vitesse de lecture (entre basse et haute vitesse)


Fonctionalités ajoutées :


- Affichage de l'heure
Micro-contrôleur AVR ATMega16u2

- Bipeur à chaque changement d'heure

- ...


Matériel utilisé :


- Carte électronique

- Micro-contrôleur AVR

- Mémoire et autre composants (résistances, condensateurs...)

-

Initiation aux logiciels

Pour nous familiariser avec les logiciels Fritzing et IDE Arduino, nous avons crée un dé, voici les composants pour la création de notre dé :


- ATtiny84 avec 14 pattes

- 7 leds vertes

- 7 résistances de 220 ohm de préférence

- une batterie et un bouton poussoire


Dans un temps, on a crée le schéma PCB de notre dé, puis nous avons relier les composants ensemble sur le schéma "circuit imprimé" dans le logiciel Fritzing (Image à venir après fin confinement...)

Ensuite, nous avons programmer notre ATtiny84 à l'aide de l'IDE Arduino, dans un premier temps, nous avons crée ce programme :

  //Le port 0 correspond à la led 1
  //Le port 1 correspond à la led 2
  //Le port 2 correspond à la led 3
  //Le port 3 correspond à la led 4
  //Le port 4 correspond à la led 5
  //Le port 5 correspond à la led 6
  //Le port 6 correspond à la led 7
  //Le port 9 correspond au bouton
  //J'ai pris le chiffre des pattes de attiny84 non-alternative pinout comme vous avez dit
  int led[7]={0,1,2,3,4,5,6};
  int etat_btn=0;
  const int etat_de[7][7]={                        //Ici, les états que peut prendre notre dé en foncion du chiffre obtenu.
    {LOW,LOW,LOW,LOW,LOW,LOW,LOW},
    {LOW,LOW,LOW,HIGH,LOW,LOW,LOW},
    {HIGH,LOW,LOW,LOW,LOW,LOW,HIGH},
    {HIGH,LOW,LOW,HIGH,LOW,LOW,HIGH},
    {HIGH,HIGH,LOW,LOW,LOW,HIGH,HIGH},
    {HIGH,HIGH,LOW,HIGH,LOW,HIGH,HIGH},
    {HIGH,HIGH,HIGH,LOW,HIGH,HIGH,HIGH},
  };
  
  void setup() {
   // put your setup code here, to run once:
   pinMode(led[0],OUTPUT); // On indique de les broches 10 à 3 peuvent recevoir du courant
   pinMode(led[1],OUTPUT);
   pinMode(led[2],OUTPUT);
   pinMode(led[3],OUTPUT);
   pinMode(led[4],OUTPUT);
   pinMode(led[5],OUTPUT);
   pinMode(led[6],OUTPUT);
   pinMode(BTN,INPUT_PULLUP);
   randomSeed(analogRead(0)); //On initialise notre random
 }
  
 void loop() {
   // put your main code here, to run repeatedly:
   etat_btn == digitalRead(9);
   if ( etat_btn == LOW ){ //On regarde si notre capteur (à la broche 3) est allumé : "low" puisque input_pullup inverse le mode input
     int chiffre_de,i;
     chiffre_de=random(1,7);
     for(i=0;i<7;i++){
       digitalWrite(led[i],etat_de[chiffre_de][i]);}} //On effectue les actions à faire pour les 7 leds
 }
 // Je n'ai pas mis de delay() puisque le programme marche seulement apres l'appui du btn

(A voir si le programme marche ou pas)

A venir : le code test de notre carte si ci-dessus de marche pas

Création de notre clé usb

Nous avons repris la clé usb issue du fichier "Cle_usb_bisv2.fzz" (On peut toujours changer si nécessaire)
Afficheur 7seg ou création d'un afficheur

Cependant, comment va t'on crée notre horloge?

On va faire un programme, avec un micro-controleur contrôlant un afficheur 7seg : exemple [1]

Schéma de base de notre circuit

Voici le matériel :

- 11 résistances

- afficheur 4 chiffres 7seg [2]

- Micro-controleur (à voir le modèle)

- transistor (à voir le modèle)

Premier schéma de notre circuit 7 segments
















( Le modèle du transistor, valeur de résistance et le micro-contrôleur reste à changer )

Calcul de la résistance

Voici les données de notre afficheur 7seg : Tension direct des leds : 2.2V, Courant direct des leds : 20mA. Par un calcul simple, il nous faut des résistances de 55Ω pour les leds

LA SUITE JEUDI 26 MARS 2020