BE 2011-2012 : Différence entre versions

De Wiki de bureau d'études PeiP
(Robot téléguidé avec système embarqué)
(Robot téléguidé avec système embarqué)
Ligne 82 : Ligne 82 :
  
 
== Robot téléguidé avec système embarqué ==
 
== Robot téléguidé avec système embarqué ==
Votre robot doit pouvoir être radio-guidé par un contrôleur. Le dit contrôleur peut diriger le robot au vu de l'image de la webcam embarquée. L'acquisition de la webcam et sa diffusion par WiFi est assuré par un système embarqué FoxBoard. La FoxBoard vous sera livrée configurée mais il faudra l'embarquer dans votre robot avec tous ses accessoires (webcam, module <tt>bluetooth</tt>, boitier de piles). Un calcul du temps d'autonomie doit être effectué. Dans un premier temps le radio-guidage peut se faire à l'aide du logiciel MindStorm par <tt>bluetooth</tt>. Dans un second temps il faut étudier la possibilité d'un radio-guidage par WiFi, les ordres étant transmis par un navigateur Web au serveur Web de la FoxBoard puis transmis au micro-contrôleur MindStorm par <tt>bluetooth</tt>. Vous aurez le choix de programmer votre robot avec le logiciel MindStorm ou avec un langage de bas niveau proche du langage C (voir la page web [http://vikram.eggwall.com/computers/nxt.html]).
+
Votre robot doit pouvoir être radio-guidé par un contrôleur. Le dit contrôleur peut diriger le robot au vu de l'image de la webcam embarquée. L'acquisition de la webcam et sa diffusion par WiFi est assuré par un système embarqué FoxBoard. La FoxBoard vous sera livrée configurée mais il faudra l'embarquer dans votre robot avec tous ses accessoires (webcam, module <tt>bluetooth</tt>, boitier de piles). Un calcul du temps d'autonomie doit être effectué. Dans un premier temps le radio-guidage peut se faire à l'aide du logiciel MindStorm par <tt>bluetooth</tt>. Dans un second temps il faut étudier la possibilité d'un radio-guidage par WiFi, les ordres étant transmis par un navigateur Web au serveur Web de la FoxBoard puis transmis au micro-contrôleur MindStorm par <tt>bluetooth</tt>. Vous aurez le choix de programmer votre robot avec le logiciel MindStorm ou avec un langage de bas niveau proche du langage C (voir la page web [http://www.eggwall.com/2011/08/lego-nxt-mindstorm-with-linux.html]).
  
Matériel: <span style="color: green;">boite lego MindStorm<span>, <span style="color: green;">eeePC avec convertisseur <tt>bluetooth</tt></span>, <span style="color: green;">FoxBoard avec webcam, interface Wifi, convertisseur <tt>bluetooth</tt></span>, <span style="color: green;">boitier piles</span>.
+
Matériel: <span style="color: green;">boite lego MindStorm<span>, <span style="color: green;">eeePC avec convertisseur <tt>bluetooth</tt></span>, <span style="color: green;">FoxBoard avec webcam, interface WiFi, convertisseur <tt>bluetooth</tt></span>, <span style="color: green;">boitier piles</span>.
  
 
= Intégration des fonctionnalités =
 
= Intégration des fonctionnalités =

Version du 29 janvier 2012 à 16:19

But à atteindre

Ce bureau d'étude a comme finalité la construction de robots patrouilleurs. Ces robots doivent parcourir de façon semi-autonome un espace en accumulant des données. Ces données peuvent être, par exemple, des images de leur environnement ou le résultat d'écoutes WiFi. Un robot semi-autonome est un robot capable de se déplacer dans son espace sans intervention humaine en suivant un balisage quelconque (marquage au sol, tags RFID, sons particuliers, etc). Un humain doit cependant pouvoir prendre le contrôle partiel ou total d'un robot. Le contrôle partiel consiste à faire varier la vitesse du robot, le sens du parcours du robot, etc. Le contrôle total consiste à gérer complétement le déplacement du robot, même si ce dernier évite encore les collisions (que le contrôleur pourrait ne pas avoir pu prévoir). Les robots doivent aussi pouvoir communiquer entre eux pour s'échanger des informations de positionnement, pour pouvoir s'éviter ou pour pouvoir se regrouper (par exemple pour pouvoir explorer en détail un lieu particulier). A ce propos il est fondamental que les robots sachent se positionner pour pouvoir annoter les informations envoyées ou stockées (images ou données).


Matériel à votre disposition

Boite mindstorm.jpg
Foxboard.jpg

Les couches basses du robot seront réalisées à l'aide de Lego MindStorm. Le Lego va permettre de réaliser le chassis avec sa motorisation et d'y installer divers capteurs. Il est même possible d'assurer une certaine communication entre robots grâce à la technologie bluetooth intégrée au micro-contrôleur MindStorm. Pour aller plus loin, il est nécessaire d'embarquer un micro-PC de type FoxBoard sur le robot. C'est ce micro-PC qui fera faire les acquisitions d'images ou les analyses WiFi et c'est à lui que le micro-contrôleur du MindStorm pourra envoyer ses données de localisation.


Répartition des tâches

Chaque binôme va se voir affecter une des problématiques décrites dans les précédentes sections. Par la suite les résultats devront être incorporés dans chaque robot pour obtenir un robot tel que décrit plus haut. Notez que tous les robots doivent savoir s'arrêter quand un obstacle se présente devant eux (utilisation du sonar MindStorm).

Robot suiveur de ligne

Vous devez créer un robot capable de suivre une courbe discontinue au sol. Le robot doit être capable de réaliser les actions ci-dessous.

  • en cas de perte du marquage, tourner dans un sens puis dans l'autre pour tenter de le retrouver avec des angles de plus en plus grands ;
  • si le marquage ne peut pas être retrouvé, se remettre dans la position de la perte initiale et partir tout droit ;
  • se remettre dans l'axe du marquage lorsque ce marquage est retrouvé ;
  • s'arrêter quand un obstacle se présente devant lui et repartir si l'obstacle disparait ;
  • changer de parcours sur commande, c'est à dire emprunter un parcours d'une couleur différente dès qu'il est rencontré ;
  • inverser son sens de parcours.

Voici des exemples de parcours discontinus pouvant être suivis dans les deux sens.

Matériel: boite lego MindStorm, scotch de couleur.

Robots synchronisés

Cette étude sera menée par deux binômes. Vos deux robots doivent être capables de se synchroniser. Il vous est demandé de réaliser le comportement suivant :

  • séparés, les robots avancent tout droit et s'arrêtent dès qu'ils détectent un obstacle avec leur sonar ;
  • les deux robots doivent pouvoir être couplés côte à côte ;
  • dans le mode couplé, les robots avancent quand aucun obstacle n'est détecté par leurs sonars ;
  • dans le mode couplé, si un robot détecte un obstacle et l'autre non le couple tourne dans la direction où aucun obstacle n'est détecté.

La communication entre les deux robots se fait par bluetooth.

Matériel: 2 boites lego MindStorm.

Robot suiveur RFID

Vous doterez votre robot d'un lecteur RFID et d'une boussole. Votre robot doit être capable de réaliser les opérations ci-après :

  • trouver sous une marque de couleur précise (feuille A4, disque, ...) une carte RFID ;
  • partir dans une direction donnée ; le robot s'oriente avec la boussole puis se lance avec ses deux moteurs sans tenter de corriger la trajectoire ;
  • mémoriser des caps en fonction des identifiants des cartes RFID.

Par la suite vous intégrez ces trois fonctionnalités pour obtenir un robot capable de suivre une trajectoire matérialisée par des marques sous lesquelles une carte RFID est dissimulée. Quand le robot détecte une marque via son capteur de couleur, il se met à chercher l'emplacement exact de la carte RFID. Une fois la carte localisée, le robot trouve le prochain cap à suivre en fonction de l'identifiant de la carte RFID. Le robot s'oriente sur ce cap avec sa boussole puis se lance vers la marque suivante. Et ainsi de suite.

Voici un exemple de parcours en suivant des marques RFID.

Matériel: boite lego MindStorm, module RFID, cartes RFID, module boussole, marques de couleur.

Robot naviguant aux instruments

Vous doterez votre robot d'une boussole pour lui permettre de connaitre précisement sa direction. Vous devez réaliser les actions décrites dans la suite.

  • Vous commencerez par faire en sorte que votre robot sache avancer en ligne droite, pour cela vous utiliserez le contrôle PID décrit sur la page WikiPedia. Pour simplifier ce qui est dit sur cette page, sachez le principe appliqué à votre robot va être d'effectuer des corrections sur la trajectoire en utilisant des rotations. L'angle de ces rotations va être calculé en fonction de l'erreur de trajectoire indiqué par la boussole. Plus exactement par la somme d'une constante multipliée par l'erreur instantanée, d'une autre constante multipliée par l'intégrale de l'erreur et enfin d'une dernière constante multipliée par la dérivée de l'erreur. A vous de trouver les valeurs adaptées des trois constantes.
  • Par la suite faites en sorte que votre robot sache contourner les obstacles au plus juste. Au plus juste signifiant qu'il tournera vers la droite ou vers la gauche en jugeant d'où se trouve le chemin le plus libre. L'algorithme a appliquer consiste à tourner le robot d'un angle faible dans un sens puis dans l'autre et de lire les resultats du sonar. Si les deux mesures indiquent un obstacle trop proche, l'angle est augmenté et le procédé répété. Dès qu'une trajectoire indique un chemin libre ou du moins un obstacle à distance suffisante, le robot avance en ligne droite suivant cette trajectoire. La boussole doit être utilisée ici pour vérifier que le robot effectue précisement des rotations des angles souhaités et qu'il sache revenir en position initiale pour éventuellement recommencer avec un angle plus grand.
  • Pour permettre de suivre le comportement du robot, faites afficher sur la brique de contrôle MindStorm l'angle de rotation pour le dernier contournement et la distance parcourue le long de la dernière ligne droite.

Intégrez les comportements pour obtenir un robot capable de contourner les obstacles avec un minimum d'intelligence.

Voici un exemple de contournement d'obstacle avec l'algorithme décrit.

Matériel: boite lego MindStorm, module boussole.

Robot téléguidé avec système embarqué

Votre robot doit pouvoir être radio-guidé par un contrôleur. Le dit contrôleur peut diriger le robot au vu de l'image de la webcam embarquée. L'acquisition de la webcam et sa diffusion par WiFi est assuré par un système embarqué FoxBoard. La FoxBoard vous sera livrée configurée mais il faudra l'embarquer dans votre robot avec tous ses accessoires (webcam, module bluetooth, boitier de piles). Un calcul du temps d'autonomie doit être effectué. Dans un premier temps le radio-guidage peut se faire à l'aide du logiciel MindStorm par bluetooth. Dans un second temps il faut étudier la possibilité d'un radio-guidage par WiFi, les ordres étant transmis par un navigateur Web au serveur Web de la FoxBoard puis transmis au micro-contrôleur MindStorm par bluetooth. Vous aurez le choix de programmer votre robot avec le logiciel MindStorm ou avec un langage de bas niveau proche du langage C (voir la page web [1]).

Matériel: boite lego MindStorm, eeePC avec convertisseur bluetooth, FoxBoard avec webcam, interface WiFi, convertisseur bluetooth, boitier piles.

Intégration des fonctionnalités

Une fois toutes les études terminées et les solutions implantées (sous forme de briques personnalisées par exemple), vous doterez votre robot des fonctionnalités nécessaires à la réalisation de la démonstration finale. Votre robot devra être capable de suivre des marquages discontinus au sol, être capable de communiquer avec les autres robots, d'embarquer une FoxBoard avec une connexion Wifi et une webcam, être capable de se repérer dans l'espace et enfin pouvoir être contrôlé à distance par un humain. Pour la partie repérage dans l'espace vous avez le choix de vous reposer sur une lecture d'informations au sol, sur le repérage de tag RFID (deux détecteurs disponibles), sur le calcul aux instruments (1 gyroscope et 2 accéléromètres disponibles) ou le repérage de sons particuliers (2 capteurs de sons possibles). Ces méthodes peuvent être complétées par des heuristiques de localisation en fonction des tours de roues et des angles de rotations.

Pour configurer la FoxBoard avec tout le matériel nécessaire, suivez les instructions.

Pour une description du système à obtenir suivez la flèche.

Img circuit.jpg

Démonstration finale

Pour la démonstration finale vous tracerez un parcours constitué de deux courbes fermées reliées par deux bretelles de communication (parcours rouge et bleu). Ajoutez à ce parcours trois voies de garage, deux conduisant à des stations de rechargement factices (parcours vert) et la dernière à une voie de stockage (parcours jaune). Le parcours doit, bien entendu, être constitué d'un marquage au sol discontinu. Vous placerez vos six robots complets sur l'une des courbes fermées. Les robots doivent cheminer un certain temps sur cette courbe (l'occasion de vérifier le bon suivi du marquage au sol et que les robots savent tenir leurs distances). Par la suite le contrôleur doit ordonner à trois robots de passer sur l'autre courbe fermée par une des bretelles. La encore, les robots doivent cheminer un certain temps sur leurs parcours distincts. Sur chaque courbe, le contrôleur ordonne à un robot de changer de sens de parcours. Les robots devraient se bloquer. Le contrôleur inverse le sens de parcours des autres robots pour débloquer la situation. Le contrôleur ordonne enfin à chaque robot d'aller se recharger. Les robots cherchent donc sur leurs parcours un embranchement vers une voie de chargement, suivent la voie jusqu'au bout et attendent un certain temps. Attention les robots ne s'engagent sur une voie de chargement que si d'autres robots ne les occupent pas (communication entre robots). Si les voies de chargement sont occupées, les robots vont attendre sur la voie de stockage (les robots en question verifient de temps en temps pour voir si une voie de rechargement devient libre). Pendant cette démonstration, le contrôleur prend parfois le contrôle total d'un robot et le promène un peu, le robot devant ensuite retrouver automatiquement le parcours le plus proche.